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Explicit formulae for the calculation of the exchange polarization energy in the 
interaction of closed-shell atoms or molecules have been derived by assuming 
neglect of the electron correlation within the noninteracting systems. The 
dispersion part of the exchange polarization energy has been represented as a 
sum of contributions arising from the interaction of two, three or four orbitals 
at a time. Each of these contributions is given by an integral involving the 
orbitals engaged in the interaction and the pair functions describing the 
dispersion interaction between these orbitals. The numerical calculations for 
the interaction of two ground-state beryllium atoms show that the exchange 
dispersion energy is positive and quenches about 5 to 10 per cent of the dis- 
persion term. This results in a decrease of the interaction energy, computed as 
a sum of the SCF and dispersion components, by 6 to 30 per cent for interatomic 
distances ranging from 10 to 7 bohrs. 

Simplified formulae for estimating the exchange dispersion energy in the 
interaction of larger systems are also proposed and their accuracy is discussed. 
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1. Introduction 

For many years there has been considerable interest in perturbation theory treat- 
ments of weak interatomic or intermolecular interactions. In the long-range region 
the interaction energy has been calculated by employing the Rayleigh-Schr6dinger 
perturbation theory combined usually with an extensive use of multipole ex- 
pansion [1], whereas the short-range repulsive part of the interaction potential has 
been obtained by using the first-order perturbation procedure devised by Heitler 
and London [2]. The symmetry-adapted perturbation theory developed in the late 
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sixties [3] provided a theoretical justification for the above treatment and indicated 
a systematic way to obtain more accurate values of the interaction theory. How- 
ever, it was recognized early that there is no unique method of forcing the sym- 
metry within the framework of perturbation theory. In fact very many symmetry- 
adapted perturbation expansions have been proposed to date [3]. Among them 
the Murrell-Shaw [4] and Musher-Amos [5] (MSMA) expansion has won the 
greatest popularity [6-12], because of its simplicity and clear physical interpreta- 
tion of the low-order energy contributions. The numerical calculations for model 
systems such as H f  [13, 14] or H 2 [15] show that the MSMA expansion truncated 
after the second order duplicates the depth of the van der Waals well with an 
error of less than 1~. It should be stressed that this accuracy can be obtained 
only if the second-order exchange contribution to the interaction energy, ~(2) 

~ e x c h  

is taken into account. The exchange polarization energy, Eexch_pol, introduced in 
1965 by Murrell, Ran did and Williams [16] is the main, "single-exchange" part of 
E~2) In the region of the van der Waals minimum the multiple electron exchanges xch  " 

do not play an appreciable role and the Eexch_po I represents more than 99.9~o of 
E(2) [13, 17]. It is worthwhile to remark that the exchange polarization energy 

e x c h  

is not related to the MSMA theory alone. It also represents an overwhelming 
part of the second-order energies arising in the Hirschfelder-Silbey and Hirsch- 
felder-van der Avoird theories [13] and can be identified in many van Vleck 
type perturbation formalisms [3, 15] based on the Rayleigh-Ritz variational 
principle. It appears that among the many second- and higher-order exchange 
terms that have been generated by the symmetry-adapted perturbation theory, the 
exchange polarization energy alone needs to be calculated in order to obtain a 
quantitatively correct description of the interaction energy in the van der Waals 
minimum region [13-15]. 

Since the exchange polarization energy is much more difficult to calculate than the 
other first- and second-order contributions to the energy, it has been calculated up 
to this time only for the interaction of one- and two-electron systems [13-15, 17]. 
Perturbational studies of the interaction energy for larger systems such as rare gas 
atoms [18-20] or water molecules [21] have neglected this quantity, assuming that 
it is small as compared to other components of the interaction energy. The validity 
of such a treatment can be justified only by establishing the actual significance oi; 
the exchange polarization energy in building up the total interaction energy. 

Another reason for being interested in the exchange polarization interaction is that 
it has been invoked to explain some physical phenomena. It has been argued, for 
example, that the exchange polarization interaction is responsible for the quenching 
of the polarization of ions within the alkali halide molecules [22, 23], or that the 
non-additive three-body part of Eexch.po~ determines the structure of the rare gas 
crystals [24]. 

The aim of this paper is to present a method for the evaluation of the exchange 
polarization energy in the interaction of many-electron closed-shell atoms or 
molecules. The method neglects the electron correlation within the noninteracting 
systems, which means that only the first term in a suitable multiple perturbation 
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theory expansion for Eexch.po 1 is taken into account. This approximation is neces- 
sary because the accurate correlated wave functions for many-electron systems are 
either unknown or so complicated that they cannot be employed in practice. We 
present the explicit expressions for the calculation of both the induction and the 
dispersion components of the exchange polarization energy, the latter component 
being considered in more detail since the exchange dispersion energy, as an inter- 
molecular correlation effect, is not taken into account by the standard Hartree- 
Fock calculations. These expressions have been derived without invoking any 
particular basis set and can be evaluated in practice by using arbitrary one-electron 
or explicitly correlated basis functions. 

The practical applicability of our method is illustrated by numerical calculations 
of the interaction energy of two ground-state beryllium atoms. This system has 
recently been the subject of growing interest [25-28]. However, most studies that 
have been performed thus far have been based on the first-order [25], or the 
Hartree-Fock approach and, except in the case of very large interatomic distances 
[29-32], little has been known about those components of the interaction energy 
which are due to the electron correlation [27]. 

Our calculations are also aimed at explaining the role that particular electronic 
shells play in the exchange dispersion interaction and at testing approximate 
formulae that can be used to estimate the exchange dispersion energy in the inter- 
action of larger systems, 

2. Method 

Let us consider the interaction of two ground-state closed-shell atoms or molecules, 
denoted below by A and B. The total spin-free Born-Oppenheimer Hamiltonian 
H of the interacting systems can be divided most naturally in the following way 

H = H o +  V, (1) 

where Ho = HA + HB is the sum of the Hamiltonians of the free systems and Vis the 
interaction operator collecting the Coulombic interactions between the electrons 
and the nuclei of system A on the one hand, and those of system B on the other. 
For our purposes it is convenient to exPress V through a generalized two-electron 
potential v( ij) 

v =  Z Z (2) 
ieA j~B 

The explicit form of v(tj) depends on the nuclear framework of the total system. 
For the interaction of two neutral atoms we have 

= R - 1 -  r2)  - + 1, (3) 

where R is the internuclear separation and rAj, rB~ and r~j are distances between the 
nuclei and electrons specified by the subscripts A, B, j and i. The ground-state 
eigenfunction of Ho is 

~bo = Oh" q~B, (4) 
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where ~A and ~B are the ground-state eigenfunctions of HA and HB corresponding 
to the energies EA and EB respectively. 

The expression defining the exchange polarization energy can now be written in the 
form [16, 33] 

Eexoh.po, = ] ( V -  ( V ) )  - (5) 
where 

i~A j~B 

is the sum of the permutation operators Pij interchanging the coordinates of the 
ith and jth electrons, (V') and ( ~ )  are the expectation values of V and 2~ cal- 
culated with the function 40, and o~(*) is the first-order polarization function [34] --pol 
defined as the only solution to the equation 

(/-/A + E A -  EB)   ol : (6) 

satisfying the symmetry requirements and the orthogonality condition 
(1) (eo iepol )  =0 .  

For a simple derivation of formula (5) the reader is referred to Ref. [33]. 

For the interaction of many-electron systems the solution of Eq. (6) as well as the 
evaluation of expression (5) by using the accurate correlated wave-functions ~g 
and ~B is impossible for the present because these functions are either unknown or 
too complicated to be handled in practice. Therefore, we are forced to neglect the 
intra-atomic or intra-molecular correlation. This can be accomplished by em- 
ploying the multiple perturbation theory formalism [21] based on the Moller- 
Plesset decomposition [35, 36] of the Hamiltonians H A and H R : 

H x = H(x ~ + Wx, X = A or B, (7) 

where Hx (~ is the sum of the Fock operators for the system X 

H(x~ ~ hX(i), X = A or B (8) 
ieX 

and W x is the difference between H x and H(x ~ Using the decomposition (7) and 
applying the usual Rayleigh-Schr6dinger perturbation theory one can express the 
functions ~A, q~R and ,n(1) as sums of an infinite number of perturbation cor- ~pol 
rections due to the perturbations W A and W~. 

~x=  ~ q~) f o r X = A o r B  (9) 
n=0 

and 

~(121: ~ ~ "*-'pol~'l(l"m) (10) 
n:O m=O 

where, e.g. the correction a~<~ ~m) is of the first order with regard to the perturbation =pol 
V0 and of the nth and ruth order with regard to the perturbations W A and W B , re- 
spectively. The zeroth-order term, #<x ~ in the expansion (9) is the normalized 
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closed-shell determinant constructed from the Hart ree-Fock orbitals : 

(j~(O) _ ( ~,T T~ 1/2 ,.~ x - t ~ ' x . J  ~ x  [ I  q~k(k), (11) 
k~X  

where Nx is the number of  electrons in the system X, agx is the idempotent anti- 
symmetrizer for the electrons belonging to this system and q)k, k = 1, 2 . . . . .  NA + Na 
is the set of  all occupied Hartree-Fock spin orbitals for the noninteracting systems. 
We assume that the electrons and spin orbitals of  the system A are numbered by 
1, 2 , . . . ,  NA and those of  the system B by NA + 1, NA + 2 , . . . ,  NA + NB. Then, 
"k ~ A" means that k = 1, 2 , . . . ,  N a and "'k e B" means that k = N A + 1, N A § 2 , . . . ,  
NA + NR. The leading term in the expansion (10) is the "Har t ree-Fock polarization 
function", ,~(1 oo) defined by the equation "*'pol 

(0) (0) (0) ~,llAt" TJ(0) • --*~AiU(0) --*~Big'(0)~rli(i 0 0 ) - -  ( V - - ( ~ } o ] ' * " p o l  - -  [I@b o ))~b o , ( 1 2 )  

where EA (~ and EB (~ are the sums of  orbital energies for the systems A and B 
respectively, and --om(~176176 ~'B . To make a solution of  Eq. (12) unique, the 
orthogonality condition (~(o~ ~(p*o ~ o)) = 0 must also be imposed. 

Inserting (9) and (10) into (5) one obtains the triple perturbation theory expansion 
for Eexch-pol, the leading term of  which is 

Eo(2oo) _ ( (13) xch_pol--N-:~-A ~v B [x r 

where the expectation values ( V )  and ( ~ )  are now calculated with the function 
�9 (o ~ The role of  the terms proportional to (V)  and ( N )  is to cancel unlinked 
clusters appearing when the matrix element/,~(o)m(o) v~lm(lOO)\ is expanded in \ "a:'A "~'B r ~ "~'pol / 

terms of  eigenfunctions of  the operators h A and ha. 

Making use of  the spectral expansion of  the operator HA(~ HB (~ it is not difficult 
to show that the solution to Eq. (12) can be written in the following form 

mdisp (14)  (loo)_ 
o o l  - -  

where 

( ~ d = ( N x  !)a/2 ~ ~ ,x f? (k)  I~ ~~ X = A  or B (15) 
k~X p~X  

p~k 

+di~p__ (N h !N B !)~/2 ~ ~ a~AdSffk,(k/) 1~ ~oV(P). (16) 
k~A l~B p ~ k, l 

The one- and two-electron functions fk x and UkZ, referred to below as induction arid 
disperson pair functions respectively are uniquely defined by Eqs (14)-(16), 
provided that the following orthogonality constraints are imposed 

~0*(1)fTx (1) dz~ =0,  (17) 

cP*(1)ou,(t2) dZl =S ~0"(2)~,-k(12) dz2 =0,  (18) 

for k and 1 belonging to the same system. By substituting Eqs. (14), (15) and (16) 
into Eq. (12), multiplying both sides of  the resulting equation by the product of  all 
spinorbitals except for % and integrating over the coordinates of  N A § N B -  1 
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electrons one can easily find that the functions fk x satisfy the equation 

[hX(i) - e~k] fkX(i) = -- Px (i)COY(i)CPk (i), (19) 

where X = A, Y = B or Y = A, X = B, e x is the orbital energy corresponding to the 
kth spinorbital, Px is a projection operator that projects out of  the occupied space 

Px--  1-- • X = A  or B (20) 
k e X  

and cox(i) is the electrostatic potential of  the system X: 

cox(0= ~ y v(ij)~O*(l')Cpk(j) dLi, x = a  or B. (21) 
k E X  

Similarly, the dispersion pair function ~kZ satisfies the equation 

[hA(l) + hB(2)-- e~' -- e~]~k,(12) = -- PA(1)PB(2)v(12)r162 (22) 

Since for closed-shell systems Px is in essence a spin-free operator the spin part of  
fik~ is the same as the spin part of  the product ~o k. ~o~ and the space part of  ~k~, 
denoted by uu, satisfies an equation identical to Eq. (22) except that the spin- 
orbitals are replaced by their orbital parts. A similar result holds for the space 
part of  j~x denoted by fk x. The function Ukl can be interpreted as a result of  the 
dispersion interaction of  an electron occupying the kth orbital with that occupying 
the lth orbital. The overall effect of  the dispersion interaction is given by the 
function ~i~p of  Eq. (14). The sum of the remaining two terms in Eq. (14), denoted 
by --a~'~i~d corresponds to the induction interaction and is interpreted as an effect of  
the mutual polarization of  the interacting systems by their static electric fields. 
This interaction is very important when the interacting systems have large per- 
manent multipole moments. However, at smaller distances, even for the inter- 
action of  spherically symmetric atoms the induction interaction may account for a 
considerable portion of  the interaction energy [37]. 

When inserted into (13), formula (14) leads to the following decomposition of  the 
exchange polarization energy 

E ( 2 0 0 )  _ E ( 2 0 0 )  r  1~~ 2_ g7(200)  / A  ~____ l~h ~_ K ' (200)  
exch-pol - -  exch- ind k r x 1 - , / ~  ~ e x c b - i n d  \~ �9 x J ]  ~ * ~ e x c h _ d i s p  (23) 

where the first term in (23) corresponds to the first term in (14) etc. The sum of  the 
first two terms in (23), hereafter denoted by E(2~176 is the exchange induction 
energy and is interpreted as a result of  the antisymmetrization of  the wave function 

~ ( 2 0 0 )  deformed previously by the induction interaction [38]. The third term "~exch-di~p, 
is the exchange dispersion energy resulting from the antisymmetrization of  the 
corrections to the wave function due to the dispersion interaction [33]. The 
explicit expressions for m2oo) and F(2oo) ~ e x c h - i n d  ~exch-disp can be obtained by substituting 
Eqs. (14), (15) and (16) into Eq. (13) and performing all possible integrations. The 
result, which is a rather complicated one, can be written in a transparent form by 
using the following cluster expansion 

E = E Z  oAB Gikj -~- 2 Z + Z 2 ~AABB (24) 15, ijl gikjl 
i j i<k j i j<l i<kj<l 
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where, for instance, the symbol rOik j~AAB, indicates that the corresponding three- 
orbital contribution depends only on the ith and kth orbitals of system A, jth 
orbital of system B and on the pair functions describing the dispersion interaction 
between these orbitals. The contributions oAAB ~ABB and ÂABB ~'ikj , girl gikjl  are defined to be 
symmetric with regard to the interchange of indices i and k or j and 1 and can be 
obtained by symmetrization of the corresponding primitive quantities, denoted 
by g. For instance: 

o r  

A A B B  ~ A A B B  - -  ~ A A B B  - -  ~ A A B B  j _  ~ A A B B  
~'ikjl = Eik fl  ~-  g'kijl ~t- Eiklj  ~ ~kil j  

The explicit expressions for the many-orbital contributions to E ~2~176 denoted e x c h - d i s p  ' 
AB - A A B  by e i j ,  eik j , . . . ,  etc. (e--e), are as follows 

e~ B :  _ 2<udv,2lbj< > 

- 2<u,ab~lv23 (1 + P23)lbjbaa,> - 2<u,ja~lv13 (1 + P~3 )[aia, bj> 

- 2<uijai[vaelbjbjai)Sij - 2<u,abjl,~la, a, bj>S,j 

+ 6 (uij[ U12 [ a i bj ) S  2 + 6 (uolb a a~) ( a i b j l v l2  ]ai b j)  

(25) 

~AB = 2<u,jaklv, 3 (2 -- P ,a  )la, ak b j> - 2<u,~aklv,3 (2 - P12 )[a~ ak ba > 

+ 2(uijakbj[va4(2 d- P23 )[bjaiakbj)  

+ 2(uijakbjlv12 (2 +P14) [a ib jb jak )  (26) 

+ 2(uijakbilv14 (2-- P12)[aiakbjbj) 

+ 2(ul jakbj lv32(2--  P34)[bjbjakai)  

and 

~ A A B B  e,kjt = - 2(u~jakb, Iv12(1 -- 2Pt2 - 2P34 + 4P12 P34)]bib, a, ak)  

- 2(u~ja~,btlv,r - 2 P , 2 -  2P34 + 4P 12 P34)]akaib tb j )  

- 2(ui.iakbt[v34(1 -- 2 P x 4 -  2P23)[bt al, albj) .  (27) 

-- 2(uiiakb~tv12(t -- 2P~4--  2P23)lakblbia~)  

where the occupied orbitals of systems A and B are denoted by ai, a k and b j, b z 
respectively and Sij = (a i lb j ) .  While writing down the formulae (25), (26) and (27) 
we assumed that all the orbitals and pair functions are real. The corresponding 
expression for gApB can be obtained from (26) by substituting b t for ak, uij (21) for 
u~j (12) and interchanging a~ and b~. For the sake of brevity in Eqs. (25), (26) and 
(27) we used the notation v~j=v(ij). We also omit the arguments of the pair 
functions and the orbitals assuming that they always occur in the natural order, for 
example: uij ak bj = ulj (12)a k (3) bj (4) or a i bj bj a k = ai(1)b j(2)b j(3)ak (4). 

The many-orbital contributions to E(200)exoh-ind (A-+B), denoted by pAB, _gAB ~Uikj , . . . .  
etc. (e-p) ,  are 
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AB 

-- 2(aibjIvl2(1 + P12 )[ fj"bj )S, i+ 6(aibylv12]ai'f~)Si, (28) 

+6< ,byl  21a,bj><a,lf?>s,  
= 2<a, ba[v,e (1 - 2 P ~ 2  )laka,)(ak[.fi") 

+4(aibj[v,2[aif?>S2j+ 2(aibj]v121akfjU>SkjSij (29) 

+ 2(a, 3,1/.)12 [a k bj >(ak[ fib > Skj _]_ 4(ak b11v,z lak bj)(a, I fa")S,~ 

+4(a~bj[vl2la,~a)s2 + 2(a,b,lv,2la,fju)S,&j (30) 

+ 4(a, b,lv,2 [a, b, )(ai[.~ u )Siy+ 2(a i balv,2 ]a, b, ) (a,[.&B)Si, 
and 

~ p B  = 4( a, bylv12 lakf yu) Sk, S ,  + 4@, b ~lv , 2 la, b, ) ( akl fan>&, 
--2(a, by[v121akb,)(aklfaa)s,,+4(a,b,lv,elakb,)(akl.&B)&y (31) 

-- 2 ( aib,[v , z[akf jB) Skl Sij + 4( aibtlv a21aiffl) Skt Sky. 
n,e L~(200) The expressions for the components "-~xch-ind (A +-B) can easily be obtained from 

Eqs. (28)-(31) by substitutingfi A forfj u, v 2 , for v, 2, and interchanging ai and by as 
well as a k and bz. 

It should be stressed that the expressions for e~ Au and p Aa are identical with the 
expressions for the exchange dispersion and exchange induction energies in the 
interaction of two helium-like systems [ 17]. Therefore the contributions ~u  and 
p~n can be interpreted as the result of the exchange polarization interaction 
between the orbital a, of system A and the orbital by of system B. The last three 
terms in Eq. (24) are responsible for the pair-wise orbital nonadditivity of 

_AAU for instance, can be defined as a three-orbital ~,(2oo) The contribution elk j , /2,exch_po I �9 
pair-wise nonadditive part of the exchange dispersion energy in the interaction 
between a beryllium-like system, having orbitals a, and ak0 and a helium-like 

~AABB is defined as a four-orbital system described by an orbital bj. Similarly, e,kj, 
contribution to the exchange dispersion interaction of two beryllium-like systems 
with orbitals a~, ak and b j, b~. 

We think that the many-orbital cluster expansion (24) provides the most con- 
venient way of representing the exchange contributions to the interaction energy. 
While neglecting two-, three- or four-orbital contributions involving very weakly 
overlapping orbitals we can obtain well defined and well controlled approximations 
to the total exchange dispersion or exchange induction effect, Conversely, the 
accuracy of formula (24) can be systematically improved by allowing for multiple 
exchanges of electrons occupying strongly overlapping orbitals. This can be done, 
for example, replacing e AB by the quantities which one obtains evaluating accur- 
ately the formula (10) of Ref. [17]. 

It is worthwhile to remark that it is also possible to expand the exchange polariza- 
tion energy in terms of shells or other subgroups of orbitals. The two-shell contri- 
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butions are defined directly from Eq. (24) by limiting the running indices to 
particular shells. The three- and four-shell contributions are defined as follows 

EAAB _ A A B  - -  ~ _ A A B B  
rLM=2 2 2 • 2 (32) ~ikj t ~.~ ~ikjl 

i~K k ~ L j ~ M  i e K  k e L j ,  IEM 

and 

EAABB - A A B B  K~MN=~ ~ ~ ~ (33) ~ikjl 
i e K  k ~ L  j e M  l~N 

The multi-shell expansion is useful to study how the inner shells influence the 
exchange polarization interaction. 

A minor remark concerning the exchange induction energy is necessary. While 
deriving Eqs. (28) (31) we assumed that the induction function formulafj B was a 
result of an action of the overall electric field of system A. However, this field can 
also be considered as a sum of contributions from individual orbitals of system A. 
This would lead to splitting o f f  fl into orbital contributions and consequently to 
much more complicated many-orbital expansion involving five-orbital terms. We 
did not pursue this idea because in practical calculations of f j  B it is more con- 
venient to treat the potential e) A as an entity, without expanding it into orbital 
contributions. 

It is interesting to compare our formulae with the expression for the second-order 
exchange energy derived by van Duijneveldt [6]. It can be shown that van Duijne- 
veldt's results can be obtained from ours provided that: 

1. Our induction functions f/A andfj a are expanded in terms of the virtual orbitals 
of systems A and B respectively. 

2. Our dispersion pair functions uij (12) are expanded in terms of the "polarization 
structures" [-33] of the type a,.(1)bs(2) only. 

3. Unlinked cluster terms present in van Duijneveldt's expression are omitted. 
They appeared because van Duijneveldt neglected in Eq. (5) the normalization 
term proportional to ( ~ ) .  

4. The charge transfer term of van Duijneveldt's expression is omitted. The charge 
transfer term of Murrell, Randid and Williams [16] cannot be defined in a basis 
independent way and should not be considered in a nonempirical theory. The 
exchange polarization energy by itself allows for the charge transfer inter- 
action because the induction and dispersion functions do contain ionic con- 
tributions [21, 33, 37]. 

5. Two-electron integrals in the denominators of van Duijneveldt's expression are 
disregarded. This is a consequence of a different procedure of neglecting the 
intra-atomic correlation used by van Duijneveldt. 

It should be stressed that our procedure of calculating the exchange polarization 
effects gives also, without any additional effort, the induction (E~~176 dispersion 

(F(10o)~ contributions to the interaction \~disp(F(200)]) and the first-order exchange ~exch J 
energy. The corresponding expression for E~ 2~176 is 
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E/~ ~ 1 7 6  Z ~a,[~oBIffA~ + 2 Z ~bj[~oA[ujB~ (34) 
i j 

while E (2~176 ~.A ~-(lOO) di~p . . . . .  ~x~h can be conveniently expressed by using formula (24). The 
three- and four-orbital contributions to Eo (2~176 vanish and the two-orbital ones, 
denoted by d~ AB, are 

dA"=4<u~j]v~2{a, bj) (35) 

The many-orbital components of ~.(~oo) --exch can easily be written down using the 
formulae given in Ref. [-39]. 

3. Numerical Example  : Interaction of  Two Beryllium Atoms 

The solutions of Eqs. (19) and (22) can be approximated in a most effective way by 
using the variation-perturbation method described in detail in Refs. [-21 ] and [ 17]. 
In this method the trial functionfj B is expanded in terms of basis functions localized 
at both atomic centers. Similarly, uij is expanded by using not only "polarization 
structures" a,(1)b~(2) but also "ionic-type", ar(1)as(2), br(1)b,(2 ) and exchange- 
type", bs(1)a,(2), functions [--34]. Such a treatment has been shown [--33] to be 
necessary to obtain reliable values of  the exchange polarization energy. When the 
approximate, variationally determined functions f A fib and ui j  are inserted into 
the formulae of the preceding section we obtain the numerical approximations to 
the induction, dispersion, exchange induction and exchange dispersion energies, 
denoted by ~(2o0) ~(2oo) E<20o) ~,~20o) Analogously, our value of the first- ~ i n d  ' X"disp ' exch-ind, ~exch-disp" 
order energy is denoted by E ~1~176 Note that ~(2oo) and ~2oo) ~ind ~disp are lower bounds 
to F (2~176 and Ft2oo) and that this does not have necessarily to be the case for the r i n d  ~d isp  

exchange induction and exchange dispersion energies. 

The basis set used in our calculations consisted of 28 contracted Gaussian functions 
shown in Table 1. The exponents and the contraction coefficients of two s functions 
were optimized to obtain the least square fit [-40] to the accurate ls and 2s SCF 
orbitals [,41]. This ensures a faithful representation of  the Hartree Fock orbitals 
at large distances from the nucleus, which has been shown to be very important to 
obtain accurate values of the exchange energies [-39, 42]. The exponents o fp  and 
d polarization functions were optimized to obtain the lowest value of the dis- 
persion energy at R = 8. It is interesting that these exponents differ markedly from 
those which one obtains by optimizing the van der Waals constants C~62~176 and 
C~82~176 i.e. by optimizing F <2~176 , t  a very large interatomic distance R. ~disp  ~ 

The numerical results of the individual components of the interaction energy 
calculated at R = 7, 8, 9 and 10 a.u. are listed in Table 2. These results have been 
obtained by using the basis set specified in Table 1 with the exception of the SCF 
interaction e n e r g y ,  ESgF~ which has been computed employing the counterpoise 
method [-43] and the basis set of Kotos e t  a l .  [-28]. 

Our results clearly show that the exchange polarization effects are repulsive and 
suppress considerable fraction of the interaction energy. However, the attractive 
induction and dispersion forces are sufficiently strong to make the total interaction 
energy negative and to stabilize the Be 2 system. In fact, we have found that for 
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Table 1. Gaussian basis set used to representfjh,fj B, u o and 
the ground-state Hartree-Fock orbitals for beryllium atom. 
Each function was centred both at nucleus A and at nucleus 
B. The exponents are given in the reciprocal bohrs 

Con~action 
Type offunction Exponents coefficients 

s 0.229565 -0.345412 
0.232431 0.359649 
0.779701 0.386688 
1.778005 1.293875 
4.610553 1.426972 

18.124920 3.335985 
20.795090 -- 3.080523 
44.983110 0.833628 

0.023114 -0.097077 
0.048643 - 1.170286 
0.128737 -2.518049 
2.571581 1.516448 
2.935176 -0.853980 
8.637152 0.293200 

29.091680 -0.339087 
35.087120 0.418410 

PxPyPz 0.09 1.0 

PxP~P~ 0.45 1.0 

d~. dry d~ d~, d~z d,~ 0.07 1.0 

R < 7  the interaction energy, computed as a sum of  the SCF, dispersion and 
exchange dispersion components,  reveals a broad minimum. We have not ex- 
amined this minimum in detail because our treatment cannot be expected to be 
sufficiently accurate in the region [25] where the multiple electron exchanges must 
be taken into account. 

It is interesting to note that the exchange dispersion energy, being an interatomic 
correlation effect, is for Be 2 much more important than for H 2 [153 or He 2 [173. 
This suggests that any reliable treatment of the electron correlation in the inter- 
action of beryllium atoms must take into consideration the exchange dispersion 
effect. 

It should be stressed that the values of  the second-order energy contributions 
given in Table 2 may not be very accurate approximations to E (20~ F(2~176 ~ind " "~exch-ind ' 
Eo(: oo) and E (2~176 This results from the incompleteness of  our basis set which is isp exch-disp " 
lacking for exampleffunctions.  Our experience in the interaction of  helium atoms 
suggests, however, that the extension of  the basis set should not change the 
qualitative conclusions of  our calculations. 



288 G. Chatasifiski and B. Jeziorski 

Table 2. Individual components  of  the interaction energy obtained with neglect of  the intra-atomic 
correlation effects. The energies are expressed in atomic units 

R = 7  R = 8  R = 9  R = 1 0  

E ~176176 0 .3223( -2 )  0 .1066( -2 )  0.3338(--3) 0 .9862(-4)  
E~2d ~176 --0.1352(--2)  --0.3279(--3) --0.7755(--4) --0.1757(--4) 
E(200) - 0 . 2 9 5 5 ( - 2 )  - 0 . 1 4 7 6 ( - 2 )  - 0 . 7 4 1 1 ( - 3 )  - 0 . 3 8 0 2 ( - 3 )  disp 

+C(q]~176176176 - 0 . 4 8 2 1 ( - 2 )  - 0 . 1 8 1 9 ( - 2 )  - -0 .7925( -3 )  - 0 . 3 8 4 4 ( - 3 )  
E~2oo) 0 .8847( -3 )  0 .2098( -3 )  0 .4687(-4)  0 .9808(-5)  exeh-lnd 
E~2oo) 0 .3691( -3 )  0 .1550( -3)  0 .5760(-4)  0 .1990(-4)  exch-disp 
- SCF E~ t 0 .1808( -2)  0 .5950( -3 )  0 .1850(-3)  0 .5529(-4)  
Eooo)m~t2oo~ 0 .1871( -2 )  0.7381(--3) 0 .2563(-3)  0 .8105(-4)  ~ind 

(100)A- ~7(200)d- ~(200) 0.2756(--2) 0.9479(--3) 0.3031(--3) 0.9086(--4) ~ind ~ ~exch-ind 
SCF ~- ~(200) A- ~(200) " --0.7779(--3) --0.7400(--3) --0.4985(--3) - -0 .3092( -3)  int ~ d l s p  ~exela-disp 

ESCF ~_ ~7(200) --0.1147(--2) --0.8950(--3) --0.5561(--3) --0.3291(--3) in t  ~ ~disp 

" C6 (2~176 = 2.566( + 2), C~ 2~176 1.044( + 4) [-293, Cq ~2~176 = 2.344( + 5) (this work). 

It is somewhat disturbing to notice that the SCF interaction energy, R scv is --int ' 
poorly represented by the sum of the first-order and induction energies. Moreover, 
the situation gets only worse after adding the repulsive exchange induction con- 
tribution. At present it is impossible to resolve whether the large difference 

~(200)j_ F-~200) is due to the intra-atomic correlation between F:scv and E~l~176 ~ind - - ~ e x c h - i n d  ~irlt 
effects or to the higher-order induction and exchange induction interactions. It is 
possible that the well-known [443 2s-2p quasidegeneracy of Be atom can result 
in appreciable intra-atomic correlation effects. The comparison of the "Har t re~  
Fock" van der Waals constants that can be obtained using our procedure, 
C62~176 a.u. and C~82~176 [293 with the accurate ones, C6=213.5, 
C 8 =9088 [313, suggests that the intra-atomic correlation correction to ~dispF~20~ is 
positive and represents about 20% of this quantity. Further work aimed at 
explaining the role of intra-atomic correlation effect is clearly necessary 

From the practical as well as the interpretational point of view, it is interesting to 
establish the role which various many-orbital contributions play in the dispersion 
and the exchange dispersion interactions. The corresponding multi-she!! parti- 
tioning ,~e r~t20o) and E ~2~176 is reported in Table 3. It should be noted that for v~ ~disp exch-disp 
beryllium atom the electronic shells are identical with the orbita]s, consequently 
the multi-shell contributions can be obtained directly from Eqs. (25), (26), (27) 
and (35). Since the contributions from dA~, eKK,AB ~KLK,-AAB erKL-ABB and eKLKL"AABB are much 
smaller than 0.01% they are omitted in Table 3. Our results show that both the 
dispersion and the exchange dispersion energies can be very well approximated by 
the interaction of outer shells only. Similar conclusions concerning the multi-shell 
partitioning of the first-order electrostatic and exchange energies for Be 2 have 
been reported by Bulski E25]. Thus in an approximate treatment we can neglect 
the inner-shell electrons. Moreover, even if we want to go beyond the outer-shell 
approximation, we may restrict ourselves to appropriately chosen two- and three- 
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Table 3. The role of particular multi-shell contributions in the dis- 
persion and exchange dispersion interaction of beryllium atoms. The 
interatomic distance R is expressed in atomic units 

R = 7  R = 8  R = 9  R=10 

l a n  ,r 99.58 99.66 99.70 99.71 v v  ~ L L / ~ d i s p  
All AB - - (200)  100 (d~L +dgK)/E,llsp 0.42 0.34 0.30 0.29 

100 ~B/E(z~176 L L /  exch-disp 94.91 96.97 98.04 98.70 
lan ~AAB • AB~ W~200) 4.73 2.83 1.84 1.22 u u  \ C K L L  | e L K L  / / ~ e x c h - d l s p  

AB B --(200)  100 (e~L+e~Lr)/E~x,h.di~o 0.36 0.20 0.12 0.08 
100 ~A~/E~OO'd~s~a 109.64 96 .90  91.34 88.79 

a ~B is the approximation to e~L ~ obtained by calculating only the first 
term in the right hand side of Eq. (25). 

orbital contributions, neglecting entirely the four-orbital ones which are the most 
difficult and time consuming to evaluate. 

It is interesting to observe that a reasonable approximation to e AB can be obtained 
by calculating only the first integral in Eq. (25). This fact, noted previously in Ref. 
[171 and confirmed by the results of Table 3, shows that the exchange dispersion 
energy can be estimated qualitatively by using the formula which is as simple as 
that for the dispersion energy. 
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